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FOREWORD

In this thesis, an addition formula for Green's
functions of linear separable elliptic partial dif-
ferential equations in two independent variables is

derived. The formula is applied to generate new Green's

functions from known Green's functions.

This thesis is in manuscript format: it consists
of one manuscript and six supporting appendices. The
reccmmended starting point for reading the thesis is-

Appendix A: Overview of the Thesis.
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AN ADDITION FORMULA FOR

GREEN' 3 FUNCTIONS
by

JEFFREY S. COHEN and JOHN S. PAPADAKIS

Naval Tinderwater Systems Center
New London Laboratorv
New London, Connecticut 06320

1. INTRODUCTION

One of the most general approaches to solving bound-

ary value problems for linear differential equations

cocnsists of expressing the solution in terms of an

auxiliary function called the Green's function. The

Green's function is usually defined to be the solution

of the adjoint problem with a delta function as a non-

homogeneous term. The particular boundary conditions

affect the formulation of the adjéint problem and thus,
the Green's function as well. The Green's function
method can be applied to elliptic, parabolic, and hyper-
bolic linear partial differential equations as well as
linear ordinary differential equations.

This paper oresents a defivation of a formula
that gives a form of the Green's function of a separ-

able elliptic partial differential equation in terms

of the Green's functions for two simpler equations, one

of which is elliptic and the other hyperbolic. Because




of the presence of the hypeibolic equation and for the
sake of completeness, we shall, in section 2, brieflv
review the definition of the Green's function for a
Cauchy problem and its relationship to the Riemann
function. Then, the Riemann function, which is known
in some special cases, can be used to find the Green's
function in these cases. In section 3, the fcrmula
will be formally derived, applied to the reduced wave
equation, and be further justified. In section 4, we
shall apply the formula to derive what we believe to
be a new Green's function.

Before proceeding however, it is interesting to
note that although we are primarily interested in
Green'é functions for elliptic problems, the motivation
- for this work came fram recent pavers on hyperbolic
problems. A second-order linear hyverbolic aguation
in two independent variables may be solved using the
Riemann functicn. In 1958, Copson [Ref. 1] formally
derived a technique giving a possible form for the
Riemann function (which Copson called the Riemann-Green
function), assuming the variables are separable. The
technique utilized integral transforms which generali-
zed Riemann's own use of Fourier cosine transforms. In
1964, Mackie [Ref. 2] investigated similar »roblems and

presented a close relationship between the Riemann




function and the Green's function for the Cauchy prob-

lem. Mackie then apolied Fourier-Bessel transforms to

find the Green's function for Riemann's original example
and utilized the relationship between Riemann and

Green's functions to find the Riemann functions. Re-
cently, Papadakis and Wood [Ref. 3] developed an addition
 formula that gives the Riemann function of a separable
equation in terms of the Riemann functions of two simpler
equations. In deriving the formula, they employed a
refinement of Copson's integral transform method to find
Green's functions and then utilized Mackie's relation-

1 ship to find the Riemann function. In this paper, the

i | technique is further developed by applying it to Green's"

functions for elliptic partial differential equations.

s i e -
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2. PRELIMINARIES

a. The Green's Function for Elliptic Ecguations

Consider the linear elliptic second-order par-

tial differential equation in two variables
Efu] = u  + ¥ + 2a(x,y)u, - 2b(x,y)uy
+ c(x,ylulx,y) = £(x,y) (2.1)

with suitable boundary conditions on a closed curve T
(6.g., u =0 on TI). The Green's function for (2.1),
G(x,y:X,Y) 1is defined as the solution to the adjoint

eguation

E*[G] = Gy + G

v Z(G.G)x + Z(bG)Y + cG

= §(x=X] &(y-¥) (2.2)

with suitable (adjoint) conditions on the boundarv T

(e.g., G=0 on TI). If D is the interior of F(

the solution of (2.1) can be written in the form

u(X,Y) = I IG(x,y;x,Y)f(x,y) dxdy + [ B(u,G] (2.3)
D y

where B[u,G] is known on I (e.g., B[u,G] =0 on T). .

| b. The Green's function for Hyperbolic Equations
The concept of the Green's function is also

meaningful for the Cauchy problem




H[u] = B = u- & 2a(x,y)ux - 2b(x,y)uy

+ cix,y)a(x,y) = £(x,vy) (2.4)

with initial value u and uy given on the line

Y = V5. As in the elliptic case, the Green's function
G(x,y:X,¥Y) 1is the solution of
Re[G] = 6. '~ GYY = 2(aG), +,2(bG)y + cG
= §(x=-X) §(y-Y) (2.5)

subject to the adjoint boundary conditions

ng%.so on T : . 42.6)
where %%- is the (outward) normal derivative of G on

'y and I is a non-characteristic curve (i.e., the ak-

solute value of the slope of T is always less than 1)

such that I and a segment, <, of the line vy = Yq

form a closed curve, as in Fig. 1. From (2.5), (2.6),

and the amount of freedom we have in choosing [, it can

be seen that G = 0 in the portion of the interior of

'+% outside the triangle A, with vertices at points

P, A, and B. Now the solution u of (2.4) is given by

u(X,Y) -_fAf G(x,y:X,¥)£(x,v) dxdy

- f (u G=uG +2buG) dx.
o Y Y




6
c. The Riemann Function
For the Cauchy problem described above, the

Riemann function R(x,y;X,Y) is the solution of

H*[R] = 0 (2.8a)
satisfyiné

R, + Ry = (a+b)R on y-Y = X=X (2.8b)

R, - Ry = (a=bJR on y=-Y = =(x=-X) (2.8¢c)

R{X,¥:%X,¥) = I, (2.84)
Now the solution of (2.4) is given by

u(x,y) = - i— fAf R(x,y:;X,Y¥) £ (x,y)dxdy

_ A "
+ 1 IA(uYRruRy+2buR) dx :
+ Z[(A)R(A;P) + u(BIR(B;P)]. (2.9)

If the initial values of u and uY are homo-
geneous (i.e., identically 0) along y =Yy @ compari-

son of (2.7) and (2.9) would lead to

G(x,7:X,¥) = - % R(x,v;X,¥) (2.10)

inside the triangle A. TIf the initial data along

> e is nonhomogeneous, the contour integral in (2.7)
requires integration of terms including G and GY
along lines across which G itself is discontinuous.

This generates terms analogous to those inside the

T L R R R B R T




brackets in (2.9). Thus, (2.10) holds for arbitrary
initial data. (Except for a difference in notation
between a Green's function and an adjoint Green's func-

tion, the analysis leading to (2.10) is due to Mackie

[Ref. 2].)




3 eéuation

3. THE ADDITION FORMULA

a. Formal Derivation

Let us consider the separable elliptic eguation

L[u] = S

e [cl(x)+c2(y)]u(x,y) = f(x,y) (3.1)

and attempt to find the "free-space" Green's function

- (i.e., assuming cl(x) and c,(y) are analytic, find

a Green's function over the entire (x,v) plane). Since

L is self-adjoint, G(x,y:X,Y) must satisfy
L*([G] = L[G] = §(x=X) &(y=-Y¥). (3.2)

We shall attempt to find én expression for G in terms
of the Green's function Gy satisfying the hypverbolic
equation
Ny TG cl(x)Gl = §(x-X) ¢&(y=-Y) (3.3)
xx Y

and the Green's function G2 satisfving the elliptic

Gy + G, +c,y(y)G,y = §(x=X) 6(v-¥). (3.4)
xx vy

It has been shown by Papadakis and Woed [Ref. 3]
that

Rl(x,y;X,Y) = Ri(x,y-Y;x,O) = Rl(x,Y-y:X,O). (3.5)

Recalling (2.10) we can say that Gl is also an even

S R A A S RN M 5 g N B o A | I
- . " ” "




‘homogeneous form of (3.2), leading to a pair of ordin-

function of y-Y wherever it is defined for both

+(y-Y¥) and =-(y-Y). We should like to make a similar

claim for Gz. If we assume a condition at =, call

it a "radiation condition," ensuring the unigueness of

Gz, then we can claim that
G, (x,y:X,¥) = G, (x-X,v:0,¥) = G, (X-%,v30,¥) . (3.6)

Clearly, any form of (3.6) satisfies (3.4). Thus, if
our "radiation condition" is also satisfied by any form
of (3.6), the claim is justified by the unigqueness of
GZ‘ Since we are proceeding formally at this stage, let
us accept these hypotheses and (3.6) as established,
with this final observation. If cz(y) = k2 (the case
with which we will be primafily concerned in this paper)
and the well-known Sommerfeld radiation condition [Ref.
4] is assumed, then G, is unique and an even function

of x-X as desired.

Now, let us proceed by separating variables in the

ary differential equations, one of which is

8" (x) + [ey (x) + A To(x) = 0 (3.7)

where kz is the separation constant. Assume there

exists a solution 98(x,\) of (3.7) that defines a

transform




£(A) = j 8(x,\)F(x) dx.
Let 8(x,\) be the inverse transform so that

F(x) = j 8 (x,\) £(A) d).

Applving the transform to (3.2), integrating by parts
twice (ignoring terms evaluated at the endpoints of the
integral), and recalling that 8(x,A) is a solution of

(3.7) vields
g, + [e,(9) = 2%1g = § (y-¥) (3.9)
-YY zy g Y .
where g is defined by
g(y:X, ¥, 018X, = [ 8(x,AGx,y:X, 1) dx.
Utilizing the inverse transform gives

Gix,v:;X,Y) = f 3(x,l)6(x,l)g(y;x,¥,k) ax. (3.10)

Now let us apply the same procedure to (3.3).
Separating variables leads to (3.7) again and there-
fore, the same solution #&(x,)A). Transforming (3.3)

yvields
2
g + A 9, = «§ (y=T) (3.11)
where

9, (y-¥:X, 1) 8(X,) = [ 8 (x,0)G) (x,y-¥:X,0) dx.  (3.12)




o

Recalling boundary condition (2.6) and Fig. 1, 13.11)

can be solved uniquely with the initial conditions
91 >0 and g; + 0 as y + -=;

1 lY

9 {yTiX,) = - 228 FIT) gyyy

where H 1is the Heaviside step function. Inverse

transforming (3.12) vields
Gy (X,y=¥;X,0) = H (y-¥) f@(x.x)e(x.x)iiﬁli§231dx. (3.13)

For the last time, separating variables in (3.4)

leads to the equation
n 2
" (x) + 2%o(x) =0

with a solution of the form e-xkx, vielding a Fourier

transform. As before, we transform (3.4) and find

2 ~
92 * [ey(¥)=2%1g, = 3 (y-¥) (3.14)
Yy
where
N (- -
qz(y:x.Y.A)e"“x s] e"-"xsz(x-x,y;o,m dx. (3.15)
-0

Recalling from (3.6) that 62 is an even function of

x-X, it is easily deduced that = is an even function
of A and independént of X. Also comparing (3.14) to
(3.9) leads to the conclusion that 9o = g and there-

fore




g(Y:X,YpX) = g(y,‘..’;’k)

g(y,¥:=1).

Now, inverse transforming (3.15) and using the fact

that G2 and g are even
-
Gz(x-x,y;O,Y) = % f cosA (x=X)g(v,¥Y:1) di. (3.16)
0

Let us formally assume that the integrals in (3.10) .
and (3.13) also have limits from 0 to «. If, in

(3.13), we denote v-¥ by t and investigate for t>0

we get
“&
Glt(x,t;x,O) = -f 8(x,\)e(X,\)cosArt d\. (3.17)
0

Rewriting (3.16) with t replacing x-X
6, (t,y:0,0) = 2 [ ‘g(y, 15} come ar. (3.18)
0

An apolication of Parseval's identity tc (3.17) and
(3.18) yields

[ 8 (x,0)8(X,\)g(y,¥:A) d)
0

(8

= - % G(x,y:X,Y)

the last equality coming from (3.10), with the assumed

limits of inteagration from 0 to «. Thus we hope to

£ind the Green's function of (3.1) in the form
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G(x,viX,¥) = =2 j: Gy, (%/85%,01G, (£,750,¥) . (3.19)

Equation (3.19) is the general form that we shall
use in our search for Green's functions. In order to
get a more specific formula, one must investigate the i
behavier of G; and G2 and the effects of boundar- |
ies and boundary conditions on G. For the time being, i
we shall continue on with our assumptions that cl(x)
and cz(y) are well-behaved functions and look for a
"free-space" formulia. In section 4, we shall analyze
(3.19) under different conditions.

Now, recalling our discussion of Green's functions
and Riemann functions for hyperbolic equations, and

particularly Fig. 1 and Eq. (2.10)

0 for v-Y < |x-X|
Gl(x,y;X.Y) =

-%Rl(x.Y:X,Y) for y-¥ > |x-X|

where the Riemann function, Rl' is defined by (2.8).

Therefore, we can write
; 1 ;
Gl(xrt7x0°) = "2" Rl(x't7xro)H\t‘IX‘X!)

where H is once again the Heaviside step function .

Differentiating Gy with respect to t:

R T L T RS T py R
T . 4 e 'b; wtv\t_blnﬁ_».‘ ,_'}”\ ,-f.p& 1 LR TR



G, (X,£:1X,0) = -3 R (X,£:X,0)5 (t=]x-X|)

- % th(x,t;x,O)H(t-Ix-xl). (3.20)

Substituting (3.20) into (3.19):

-
G(x,v:X,Y) = fO {RIG + R

ltH}G2 dt

= Rl(x,lx-x];X,O)Gz(lx-xl,y;O,Y)

+[ R, (x,£:X,0)G,(t,v;0,¥)dt . (3.21)
| x-x L 2 ’

Integrating (2.8b&c) with a = b = 0, as in this case,

we get

Rl(x,lx-xl;x,O) = 1.

From (3.6)
Gz(lx-xl,y;O,Y) = Gz(x-x,y;O,Y).

Lastly, Rl and GZ' as they appear in the integral in

(3.21), are even functions of ¢t so that the integrand

{(with its t-derivative term) is odd,and we can drop
the absolute value from the lower limit of integration.
Recalling (2.10) we can now write (3.21l) as

G(x,y:X,¥) = G, (x=X,y:0,¥)
(3.22)

(-
-2 I Glt(x,t;X,O)Gz(t,y70,Y) at.
x-X

Integrating by parts and assuming that the term Gle

evaluated at t = » is zero, yields the alternate form
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G(x,y:X,¥) = 2 f |G, (%,t:X,0)G, (t,y:0,¥) dt. (3.23)
L 3

Equations (3.22) and (3.23) are the relationshipsrbe-

tween the Green's functions G, Gl' and G, satisfying

(3.2), (3.3), and (3.4) which we wished to derive from

our general form (3.19). Of course, all our work so

far is entirely formal and thus, justification is re-

guired. Although we do not intend to produce a rigor-

ous proof of the validity of the formulas, we shall

verify that they: satisfy some of the properties of

Green's functions and further justify some of our as-

sumptions. But before continuing in this endeavor,
let ‘us convince ourselves that it is worth the effort

by testing the formulas on a problem for which we know

the correct answer.

b. A Test Problem - The Reduced Wave Equation

In this section, we shall utilize (3.23) to
find the Green's function for (3.1l) with cl(x) = -az
and cz(y) = b2, where a and b are real, positive

constants satisfying

'ii
k2 = b2 - a% > o. . : (3.24) {

Notice that we have broken up the positive constant kz

as the difference of two positive constants rather than

the sum. We shall comment on this choice later in the E

section.
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Now we can rewrite (3.2), (3.3), and (3.4), the i
equations for G, Gl’ and G, » respectively,as
2
Gex * Gyy + K°G = 8(x-X) S(v-1) , (3.25)
G, -G - a’e = 8(x-X) §(y-1), (3.26)
XX e
and
G, +G, +b’G=38(xX) S(y-v). (3.27)
xx Y

The solutions of (3.26) and (3.27) are known to be

-%JO(aJQy-Y)Z-(x-X)Z) for y-YlIx-XI

(3.28)
G (x, :XIY) =
2 P 4 ) for y-Y<|x-X|
and
G, (%,v:X,¥) = I 'Y /ix-02 (3-1) 2) . (3. 29)

Substituting (3.28) and (3.29) into (3.23) and then

performing the required differentiation yields

ce,yix,0) = 7 3g(ak-e-x 2 Za it wA% y-n )t
' x=-X

3t 0
-~} %
s ey Y - ey 19
ZIJX_XJO(a t%=(x-X) )H1 (b/@ +(y=-Y)") %
L . bt dt
Vt2+(y-Y)2

Changing the integration variable from ¢t to

s = /tz-(x-x)2




R e 10 i O A M 305 om0 bl

17

yields

o

f Jo(as)nl(l) (b/s2+r2)-Rs ds_  (3,30)
0 /s24p2

NI
.-l.

G(x0Y7XIY) -

where r = /Qx-x)2+(y-Y)2.

Utilizing (3.24) and the appropriate integral tables
(Ref. 5, pg. 358, 19.4(3) and Ref. 6, pg. 706,
6.596(6)] yields

1 (1)
T 5,

ey (kE) (3.31)

G(x,¥:X,Y) =

the well-known free-space Green's function for the re-

duced wave equation (3.25).

Returning to the remark following (3.24), we note

2 and b2 then, in

that if kz- were the sum of a

(3.28), Gy would consist of an I,, a modified Bessel

function, rather than a JO. If, in (3.30), the Jo

term were replaced bv Io, the integral would diverge

since I0 increases exponentially for large arguments.

Thus, even under conditions when the formula is appli-

cable, each problem must be studied with great care

—

and a certain amount of ingenuity may be reguired in

order to solve the problem.

Let us note that the formula also works for the

case cl(x) = -az and cz(y) = -bz. The analysis is

- almost identical with the preceding example, with the

A

elliptic Green's function a1 Hy replaced by

PR W R T el o e T




= Ko, the modified Hankel function. Reference 6

[pg. 706, 6.596(6)] provides the required integral.

c. Further Justification of the Addition Formula

In order to verify the addition formula (3.19)

or formulas derived from it, such as (3.22) and (3.23),

at least three properties of our representation of G

should be checked:

~

(1) that the integrals involved converge;

(2) that as (x,y) - (X,¥), G possesses the
. appropriate (logarithmic' singularity; and

(3) théé for (x,y) # (X,Y), G satisfies the

homogeneous eguation.

Properties (1) and (2) should be verified for each

specific problem investigated; that is, for the parti-

cular Gl and G2 that happen to arise. For for-

mulas (3.22) and (3.23), property (3) can then be vari-

fied in general by direct differentiation.

Differentiating (3.23) twice with respect to x

and recalling that for (x,y) # (X,¥), G .
Ixx vy
chl (from (3.3))
G = G - 2G, (G . )
B 2 2 lxly-vax-x
- -]
+2f 6. 6 dt < oG (3.32)
x=X et ¢ -

Similarly, differentiating (3.22) twice with respect to

il

S
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v and recalling that

Gz = -Gz - chz (from (3.4))
Yy

XX
6. wmE zf G, G, dt + 2c f
5’ e x-X L1t 2tt 2

Adding (3.32) and (3.33)

@

G, G, dt. (3.33)
x=-X lt 2

G + G = -ch + (G

- -]
4G ") + 2¢ f G, G, dt
= " Yy g 2 P W

. XX “‘vy

- -}
+2[ Gy G,  +G G, )at-26, (G ‘ )
x-x 1t 2ttt lee 2¢  lxlovarx

--}
= =g G-C. (C.=2 f G, G.dt) +2f (G, G, ).dt
PR TS e x-x It %'t

- 26, (& | b
2 i y=-¥=x-X

So, using (3.22)

Gxx + ny + (cl+c2)G

-}
= 2(Gy Gy ) - 2G
le 2t | pugay X y=Y=x-X
Recalling that we have already assumed that GG, + 0
as t +» in order to integrate by parts K let us fur-

ther assume that G, G + 0 as t - ». Then

le 2

G + G + (c.+c. )G = =2G, (G, +G, ) =0
o  Syy v K M—

by (2.10) and integration of (2.8b, with a = b = 0).
Thus, (3.22) and (3.23) satisfy the homogeneous equation

away from the source if

T i T 7 e s e R T TR

R et S y

2 ye—
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lim G, (x,t;X,0)G,(t,v;0,Y) =0 (3.34)
i
: and
£+ t t

{  These conditions were met by the Green's functions in 3
our test problem.

Let us note that in some cases conditions (3.34)
and (3.35) may be unnecessarily restrictive. In parti-
cular (3.34) was used to integrate (3.22) by parts and,
thus, deriving (3.23). Then we used the equi&alence of
(3.22) and (3.23), along with (3.35), to verify that
our formula did indeed yield a solution of the homo-
geneous digferential equation. However, it is possible
for (3.22) (or (3.23), for that matter) to be valid
while (3.23) (or (3.22)) is not.

Consider Laplace's equation %

Ugg + Uy = 0. (3.36)

With cl(x) and cz(j) both 0, Gl and G2 are the

Green's functions for

t Upx = Ugpy = 0 (3. 37)
and
3
E
Ve Uy = 0 | (3.38) 1
respectively.

i Then,




for y-Y > |x-X|

-+
2
0

G, (%,viX,¥) = (3.39)
for y-¥ < |x=X|
and, letting r = /Qx-x)2+(y-Y)2
G, (X,¥:X,¥) = = log r (3.40)
g i i R :

Substituting in (3.22) we find the well-known free-

space Green's function for Laplace's equation

G(x,y:X,Y) = e log ¢

o (3.41)

’

since Glt = 0 inside the integral appearing in (3.22).
However, (3.23) diverges for the same situation.

Now, in light of our successful general verifica-
tion of property (3) and our successful applications of
the formulas in the test example and Laplace's ecua-
tion, let us take a heuristic look at properties (1)

and (2) by placing certain restrictions on cl(x) and

cz(y) and the boundary conditions asscciated with (3.1)..

For the formal derivationﬁwe assumed that ¢y and ¢,
were analytic in the entire plane. Now, let us modify
this assumption so that rather than thé whole plane,
we are looking at an infinite domain with boundaries
separable in x and y (e.g., the half-plane x > 0).
Also let us assume that any singularities in ¢ and

1
c, appear outside the domain of interest. Finally,

assume that as x and y approach =, cl(x) and
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cz(y) apéroadh real constant values. Without loss of
generality, it can be assumed that €, approaches a
negative constant since we can subtract a constant from
¢ and add it to <, and not alter the total coeffi-
cient in (3.1]).

With these assumptions on ¢y and ¢, , we can
hope that G, and Gy satisfying (3.3) andv(3.4),
will behave, near =, like Jo and Hél) (or Ko),
the Green's functions satisfying (3.26) and (3.27).
From the test problem, we know that the integral (3.30)
converges and thus hope that the integrals gontaining

Gl and G (3.22) and (3.23), will also converge and

27
that the integration by parts leading froﬁ one form to
the other will be justified. If necessary, further
restrictions on how fast cl and czl approach their
limiting values could be made to insure asymptotic

knowledge of G and Gy, OF perhaps entirelyv differ-

1
ent types of assumptions are necessary. However, since
the derivation of the addition formula has been £formal,
we shall leave the problem of convergence at this point.
We shall cope with the problem of the singularity

as (x,y) -+ (X,¥Y) in much the same vein. Since we
have assumed that c1 and ¢, are well-behaved, we
shall also assume that they can be treated locally

as constants. With these assumptions we can hope that

the general G; and G2 will behave like their

T e Ry s B

< R Y
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counterparts in the test probleﬁ and exhibit the ap-
propriate singularity.

While these arguments indicate that properties
(1) and (2) will be satisfied by certain types of in-
teresting problems, let us recall that these proper-
ties should be checked for each individual problem.

Property (3), however, has been directly verified

under general conditions.




' 2_m(m+l)
4, THE GREEN'S FUNCTION FOR Uyex s uYY + [k -;7——-]u-0

a. Derivation of the Green's Function using the

Addition Formula

In this section,we shall finally apply the addi-

tion formula to a non-trivial example. To the best of

our knowledge, the Green's function found in this sec-

tion has not been previously presented,

Let us consider the equation

Lu] = uxx + uYY + [kz - m_}(:;:}.).]u =0 (4.1)

on the half-plane x > 0, where m is a positive inte-
ger. We shall attempt to find the Green's function

G(x,y:X,Y) for (4.1) on the half-plane x > § satis-
fying

Llgl = 8(x=X) & (y=¥) (4.2)
G=0 on x =20 (4.2a)
G+0 as |(x,¥v)| = . (4.2b)

" As (4.1) seems to suggest we shall apply our for-

mula with cl(x) - - Bimrl) and cz(y) = kz. Thus, we
X
must find the Green's function G1 for
8 - m(msl)
- uyY -;5-— u=0 . (4.3)

As we have seen previously, G, must satisfy (3.25); so




o % 2o (1)
Gz(x X,y:;0,Y) T HO (kxr)

where r = /Qx-x)2+(y-Y)2. ?
In order to avoid an unnecessary digression, we
shall show in Appendix B that

-% Pm(E) for |x-X|<y-Y<x+X

G, (x,¥-¥;X,0) = (4.4)
0 elsewhere
oo <t
where £ = X_¥X'-(y=¥) and P_ is the Legendre poly-
2xX n

nomial of the first kind (see Fig. 2).

Now that Gl and G2 are known, we can return to

our general form of the addition formula, Eag. (3.19).
Then (4.4) may also be written in the form
2022 D
1 =
G, (x,£:X,0) = -> pm<§-§§-_2- JE(t-|x-X|) H(x+X-t).

xX

Noting that Pm(E) is the Riemann function Rl(x,y;x,Y)

for (4.3), we can also write
Gy (x,£:X,0) = =3 Ry (%,£;X,0) H(t-|x-X|) H{x+X-t). (4.5)
Differentiating with respect to t
G, (x,5%,0) = -2 Ry (k,&7%, 0)H (t=| x=X| ) 8 (x+X-t)
-3 R (%,£5X,0)6 (t=|x=X| ) B (x+X~t)
1

+5 Rl(x,t;X.O)H(t-lx-xl)6(x+x—t).

Substitution into (3.19) yields




x+X
G = -ZJ G, G,dt = [ Rl G,dt
s %7 |x-x] °F ‘

! f
+ R H (x+X-| x=X|) G5 | ?
1 2 :
y-¥=|x-X| |y=¥=| x-x| |
-y H(x+x-|x-x|)52' . (4.6) |

y=Y=x+X | y=Y=x+X

Since x and X ave both pvositive, the Heaviside

functions are both 1. Since R1 is the Riemann func-

tion for (4.3), Rl = 1 along the characteristic line

y=-Y = x=-X; a fact we could also have found by noting

that pml =2 (1) = 1. Although we also know |

y=Y¥= x-X

Pml = P_(=1) = (-1)™, we shall not use this fact
y=Y=x+X B

at this stage of the analysis because it appears to be

too svecialized (i.e., cannot be deduced from prover-

ties of the Riemann function) to include in a general

form of the formula. Now, since the integrations over

the discontinuities of Gl have been taken into ac-

count, we can revolace Rl by --ZGl and using the now |

familiar argument that G2 is an even function of t

{ and that the integrand in (4.6) is odd, we get

x+X j

+ ch(x,x+x;x,0)G2(x+x,y;0,Y). (4.7)




Equation (4.7) is the countervart of (3.22). As

B—— ..”‘..,up‘
F
1

a matter of fact, in this case we did not need to go

all the way back to (3.19). We could have substituted

our expression for Glt, (4.5), into .(3.22) and gotten

(4.7). However, because we have not proven a theorem

as to the applicability of the formula, we gain more

confidence by reanalyzing (3.19) than by performing

blind substitutions. Now, integrating (4.7) by parts

yields the counterpart of (3.23)

x+X

G(x,v:X,Y) = 2[ Gl(x,t;x,O)Gzt(t,y;O,Y)dt. (4.8)

x=-X
Direct differentiation of (4.7) and (4.8), in a
manner analogous to that performed in section 3¢, veri-

fies that G is indeed a solution of (4.1) for

(x,y) # (X,¥). Let us note that because we have finite

limits of integration, we no longer need conditions

(3.34) and (3.35).

Substituting our known forms of Gl and G2 into

(4.7) and (4.8), with the added notational convenience

. g VQX+X)2+(y-Y)2, vields *

G(x,y:X,¥) = i_ignél’ (kz) = (-1)“‘351’ (kZ)

(4.9)
x+X S S
+ f ¢ g—f_m (% ;ix't )Hél) (k/t2+ (y-¥) ) at
x—

and




: X+X L
. . x“+x°- (1) A2, oy ®
G(X'Y,X'Y) 1i fx-xpm(—?;:x—s—) Hot (k +(Y ¥) )dae.

(4.10)
So, for any positive integer m, we have shown’
that the addition formula yields the convergent inte-
grals (4.9) and (4.10) which alsc satisfy (4.1) for
(x,y) # (X,¥). If we now differentiate the Hél)
term as indicated in (4.10) and then perform the change

of variables

s = vt +(y-Y)2

we get
T
P

3. 3 2 2 |
%24 (v=v) 2-g2, (1)
L (x—l—f-—ﬁ——f-z JH) "’ (ks)kds.

(4.11)

G(x,v:X,Y) = %;f

r

In this form, we shall show that G has the appropriate

singularity, G+ 0 as x + 0, and G+ 0 as r - =,

b. Verificaticn of the Singularity of the Green's
Function
For notational convenience in investigating
‘the behavior of G near the singular point r = 0,

let us wfite

x2+x2+gy-Y)2—s2 o Ez+r2-252 i
g = & R ; (4.12)
2xX $l-r2

the identity following directly from the definitions

of r and ¥. From (4.12) it is evident that, for

i




—
0-<r<e and for s+~ 0, § ~l.

Therefore

lim P_(3) = Pm(l) = 1

0<r<s—+0 =
by the continuity of all the functions involved. So
given € > 0 arbitrarily small, choocse ¢ > 0 such
that

0<r<s<é=m legcc<P (3) <1 (4.13)
and such that

Yl(ks) <0
is simultanecusly satisfied, where of course ¥, is

the first order Bessel function of the second kind (i.e.,
=) (1)
Yl Im{Hl 3 18

Now for 0 < r < § rewrite (4.11) as

1 r 1 §
s =L fr P_(c)7, (ks)kds + T fr P, (2)¥ (ks)kds
1 (F
+ 37 Jﬁ p (2)Y, (ks)kds. (4.14)

The first and third integrals in (4.14) are well-behaved

and approach constant values as r - 0.

‘ (4.13),

Recalling

we can apply the mean value theorem to the re-
maining integral resulting in

G = %Pm(;*) ¥y () = ¥ (k8)] + constant
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where * 1is evaluated at s* € (r,8). We know that

for any s ¢ (0,8), l-e < P <1 so that

%(l-e)Yo(kr) + constant < G < % Y, (kr) + constant.

Thus, as r - 0, G behaves liké % Yo(kr) or eguival-
ently %F log r [Ref. 7, pg. 360, 9.8.1l], as desired.
We have now verified conditions (1), (2), and (3) of
section (3c¢c), that is, the integrals in our representa-
tion converge, that G possesses the correct (loga-
rithmic) singularity, and that except at the singularity
G satisfies the homogeneous partial differential equa-

tion. All that remains is an investigation of +he boun-

dary conditions.

c. Verification of the Boundary Condition along
x=0
Approaching the singular line x = 0 in the
half-plane x > 0, we have 0 < r < r. In this case,
for r <s <r, as the limits of integration in (4.11)
indicate, we observe from (4.12) that -1 <z <1 and

therefore |2 (g)| ¢ 1 [Ref. 8]. We can now write

-~

lim |G| < lim 23 IrlP (g)I'IH(l)(ks)lkds
x+0 ~x+0 4 /' M 1
P r (1) ~
< lim = H ks) |kds = 0
= x+0 4 Ir i T el '

since as x + 0, r+r and r is strictly positive




(as a matter of fact r > X > 0 on x = 0) and, thus,

{l)(ks)[ is a continuous bounded function in the

B::

interval from r to r.

—

d. Verification of the Condition at Infinity

, Lastly, we investigate the behavicr of G as
r+ . Once again, 0 < r < r and |Pu(z)| <1 so

-~

E
)t
6l <3 fr!H{l)(ks)Ikds
< e @) | @E-n (4.15)
since IH(l)(kr)l is a monotonicallv decreasing func-

1
tion. [Ref. 6, pg. 969, 8.478]. From the definitions

of r and ¥ we find that

G chuwn st s MEVE L g,
£2 '

For r sufficiently large, simple manipulations show

that
~ 1 ;
0 <r-r <2X+ 0(2) . (4.16)

For r large, it is also known [Ref. 7, pg. 365,
9.2.28] that :

12 ey | = 0™ (4.17)

Substituting (4.16) and (4.17) into (4.15) yields
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le| < 0(r"1/2)

and,thus, G+ 0 as r + », Hence, we have demonstra-

ted that (4.11) satisfies (4.2), (4.2a), and (4.2b).

e. A Closed Form for m = 1

For the case m =1, (4.11l) becomes easy to

integrate, utilizing the facts that Pl(c) = 7 and

[ s%m{V (ksixas = 5?51 ks) = 28 u{P) (xs)

g n‘l’(ks) (4.18)

[see Ref. 6, pg. 634, 5.52(1) and pg. 967, 8.471].

From the first equality in (4.18) we integrate (4.11)
to

2 2 i A
G(X,y:X,¥) = %I E.i§.ii¥:§L_[Hél)(kr)-Hél)(ki)]

11 (.2 (l) (1)

- 2xx[ (kr)-r H2 (xx) ] (4.19)

1 32..2 (1) f1) e

= 2 2 [H (kxr)- H (kxr) ]

41 22702
1 2 2241} 32, (1) =

+ == =2 [r“H (kr)-°H (kr)]. (4.20)
4i r2-r2 * 2

Utilizing the second form of (4.18) vields

G(x,y;X,¥) = %I Hoa)(kr) + II H(l)(kr)

- i
k (£2-x2)

[rH{l’(k:)-En{I’(kE)] . (4.21)




f. The Case k =0
Using standard ascending series forms for

Jn(z) and Yn(z) {Ref. 7, pg. 360, 9.1.10 and 9.1.11] ,

it is easv to show that

(1) o o 23 % s 2 i
Hy (2) — log z + = {75 + y=log2] + 0(z2"log 2) ]
and
(1) S DT 2
H2 (z) T 3 + 1 + 0(z log 2).

Substituting these forms into (4.19) and letting k + 0

yields
202 —v) 2 ~
G(x,v:X,Y) = L (EXXTR= "y 50 £/7 + b (4.22)
Thus,(4.22) is the Green's function for
G et 6 " (4.23) :
X OV 2 P i

satisfying the boundary conditions G+~ 0 as x > 0

and as | (x-X,y-¥)| - ». It is interesting to note

that (4.22) displays precisely the same form as a

fundamental solution as defined by Garabedian [Ref. 9].

If we allow k to approach 0 through positive

values in (4.11), we get

3 L ' §2+g2+gx-Y22-sz ds
G(x,Y,X,Y) a-ﬁ- fr Pm( 2xx )g— . (4.24)

(4.24) can also be derived directly from the addition

formula (4.8) where Gl still is the Green's function

2 = %; log r is the Green's function

for (4.3), but G




for Laplace's equation (3.36). In the case m =1,

(4.24) integrates directly to our solution (4.22).

Since Pm is simply a polynomial, a straightforward

integration of (4.24) may be performed for all posi-

ﬁive integers m, yielding closed form Green's func-

tions for

m (m+1l)
X

u=20

+ u -
uxx yv

which satisfy the boundary conditions G = 0 as

x+0 as r + =,
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5. SUMMARY

In section 4, we applied the addition formula to

the equation

2 _ m(m+l) &

and verified that the integral expression we derived
was indeed a Green's function. For the particular case

m = 1, we were able to express the solution in a closed

form. In addition, we succeeded in letting k - 0 in

the general integral form yielding Green's functions

for (5.1) with k = 0. While no claims have been made

about the unicueness of our solutions, we feel that,

for these equations the presentation of solutions, in

such relatively simple forms, possessing the correct

singularity and homogeneous boundary conditions is,

in and of itself, of great interest and importance.

Furthermore, the addition formula derived in sec-

tion 3 vields a new method of searching for Green's

functions for separable elliptic partial differential

equations. Of course, some analysis must be performed

for each problem encountered, but our successful ap-

plication of the formula to the ‘equations studied in

sections 3 and 4 encburages us to attempt to apply

the formula to other cases.
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J " Figure 1l: The Green's Function for Hyperbolic

Initial Value Problems
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Appendix A: OVERVIEW OF THE THESIS

1. INTRODUCTION

The major point of the thesis is the presentation
of a technique which yvields formulae for Green's func-
tions of linear separable elliptic partial differen-
tial equations in two independent variables. The for-
mulae require knowledge of the Green's function (or
Riemann function) of a hyperbolic equation and the
Green's function of an elliptic equation. Both the
hyperbolic and elliptic equations utilized in the pro-
cess are substantially simpler than the original equa-
tion. Thus, known Riemann and Green's functions may
be used to generate fo;mulae for new Green's functions.
Cnce a formula for the Green's function is known, one
can usuallv justify the result rigorously using stan-
dard analytical techniques. fn addition, the overall
process is applied in the thesis to find specific
Green's functions satisfying homogeneocus boundarv con-

ditions which we believe to be new solutions.

j
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2. CONTEXT OF THE THESIS
The manuscript deals with the self-adjoint equa-

tion

et Uy + [cl(x) + cz(y)]u = 0. (A.1)

In order to find the Green's function G(x,v:X,Y)

for (A.l), we investigate the Green's function

2
Gl(x,t;x,O) of the hyperbolic equation

Ve = Upp * cl(x)u =0 (A.2)

and the Green's function Gz(t,y;o,Y) of the elliptic

equation

Uy *+ yy + cz(y)u = 0. | - - {Re3)

The motivation for calling our result an addition for-
mula comes from the fact that formally adding (A.2)
and (A.3) vields (A.l).

Employing separation of variables, transform
techniques for solving ordinary differential equa-
tions, and Parseval's identity from Fourier transform

theory, we derive the addition formula

-2 [ 6 (x,£:X,0)6, (t,y;0,¥)dt. (A.4)
x=-X t




Integrating by parts and assuming that the term GlG2

evaluated at t = ® is zero, yields the alternative
form:
- -]
G(x,y:X,Y) = 2[ Gl(x,t;X,O)Gz (x,v:0,¥)de, (A.S5)
x=-X t
The significance of formulas (A.4) and (A.5) is

apparent. If cl(x) is such that the Riemann func-

tion of (A.2) is known or can be found and c,y(y) is

such that the Green's function of (A.3) is known or

can be found, one can substitute them into (A.4) and

(A.5) and then directly verify that G satisfies the

requirements of a Green's function. As an example, we

let cy(x) = - mim+l) , so that G1 is known to be
x
an m-th degree Legendre polynomial of the first kind

(see Appendix B for the precise form) and cz(y) = kz,
so that Gy is a 0-th order Hankel function of the

(1)
e .
we get an expression (4.1l in the manuscript) for

first kind, H (kr) . Substituting these into (A.5)

the Green's function G(x,y:;X,Y¥) of the equation

2 _ m(m+l) -
uxx + uyy + [k T ] u 0. (A-G)

-In this form, we prove that G is a solution having

the correct (logarithmic) singularity and satisfying

homogeneous conditions along the singular line x = 0

and vanishing at infinity. We believe this result to




be new, at least in the particularly simple forms pre-

sented in the manuscript. In addition, we perform the

necessary integrations and get closed forms for the

Green's function of (A.6) for the case m=1 and k

arbitrary and for the case k = 0 and m arbitrary.

At this point in the thesis development, it was ;

felt that the results should be presented in the open

literature for the use of other mathematicians work-

ing in this field. However, two relatively straight-

forward questions are ignored in the manuscript. These

deficiencies are eliminated in Appendices C and D. In

Appendix C the results of the manuscript are generalized

from self-adjoint eguations in the form (A.l) to non-

self-adjoint equations in the form

Gy ¥ uyy + 2a(x)ux + 2b(y)uy + [cl(x)+c2(y)]u-0 (A.7)

and some non-self-adjoint problems are solved. In

Appendix D we solve a problem in which cz(y) is no
longer constant. As a matter of fact we use the results

of the manuscript to find the Green's function for

_ a(m+l) _ n(n+l).
U, + uyy { 2 + 2 ]

us=20 (A.8)

in the first gquadrant of the plane satisfying homogene-
ous conditions along the coordinate axes. Once again,

this is believed to be a new result. The fact that we




i
{
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|
i

could solve otherwise intractable problems like these
(i.e., Egs. (A.6) and (A.8)) indicate the power and

utility of the addition formula.

44
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3. SPECULATIVE DISCUSSION

Having derived an addition formula for Green's

functions of elliptic equations, one begins to wonder

how the result can be generalized. In terms of func-

tional analysis, the partial differential equation

is a linear operator and the process of finding the

Green's function basically consists of inverting the

operator. How can we characterize those linear overa-

tors which admit an addition formula solution (to

itself or to the inverse problem)? At the present

stage of development we cannot answer this gquestion.

In order to get a hint towards a direction to pro-

ceed, we would like to find other opefators for which

addition formulae may be found. AaAn addition formula

for Riemann functions of linear separable hyperbolic

equations in two independent variables has been found

by Papadakis and Wood (Reference 3] and their results

are stated in Appendix E. However, we still do not

have enough examples to guide us.

In section 3¢ of the manuscript, it is proven

| that the addition formulas (A.4) and (A.5) are indeed

solutions of (A.l) away from the singularity. Follow-
ing this analysis, it would appear that if, instead of

using the Green's function G, of (A.3), we used any

solution to the homogeneous equation, we get a solu-




tion to the homogeneous equation (A.4). Thus, we might

be able to develop an addition formula for solutions
rather than for Green's functions. Now, totally enter-
ing the realm of speculation, it is felt that an addi-
tion formula could be derived for elliptic equations in
3 dimensions in terms of a hyperbolic and elliptic
decomposition, or possibly in terms of a decomposition
consisting of two parabolic equations. It is also
guessed that certain types of non-separable equations
might admit some form of an addition formula. Further
research into these specific areas and into functional
analysis techniques (such as those utilized in referen-

ces 4 and 5) is certainly an interesting avenue of

study..




Appendix B: THE GREEN'S FUNCTION FOR

s - m(m+l) 2
U uyy ——;3—— u 0

Consider

_ m(m+l)

L[Gl = G__ - G >

. v G = §(x=X) §(y=-Y). (B.1)

X

AT

1/2

Multiply both sides of (B.l) by x Jn+1/2(kx) and

integrate with respect to x from 0 to =, After

some manipulation (including two integrations by parts

and an application of Bessel's ordinarv differential

TET OIS T T T T TSR Y Py

equation)
i W e (AX) & (y=¥) (8.2)
!' gYY g m+1/2 Y .
E
% where
3 A

Recalling our previous discussions on the behavior of
Green's functions for hyperbolic equations and the simi-

lar form of (3.11), the solution of (B.2) is

gv-vix,\) = X% o Ep-nSEAEED gl

{ Noting from (B.3) that g is the Fourier-Bessel trans-

form of x-l/zG, we can inverse transform (B.4) and
multiply by x*/2 to yield
|
E G(x,v:X,Y) ;
E e -(xx)¥

2 L -]
H(y=Y) | sinA(y=-¥)J__1(Ax)J__ 1 (AX) d4A.




48

Reference to an appropriate table of integrals [Ref. 6,
Pg. 732, 6.672 (1)] vields the desired result, which
is Eq. (4.4) for m a positive integer. For m not

an integer,

0 for y-v<|x-X|
G(x,y:;X,Y) ={ - =5 (&) for |[x-X|<v-Y<x+X
2 m —-— -

- 552?22— Qm(-E) for x+X<y-Y

where P, and Qn, are Legendre functions of the first
2and 2
X°+X“= (y=Y)

and second kind, respectively, and ¢ = g 5
%




Appendix C: NON-SELF-ADJOINT EQUATIONS

Although the manuscript deals only with linear

elliptic partial differential eguations which are

separable and self-adjoint, the non-self-adjoint case

may be reduced to self-adjoint form by a transforma-

tion of the dependent variable. Let us consider the

more general problem

LIG] = Guy+G,,*2a(x)G,+2b(y) G, *[c) (x)+cy (¥) 1G(x,viX,¥)

= §(x-X) &(y-¥). (c.1)
Let G(x,y:;X,Y) be defined by

X b4 -~
G(x,y:X,Y) = exp{-j a(t)dt-f‘b(t)dt}G(x,y;x,Y). (C.2)
X Y

Under this transformation of variables, L. defines the

transformed operator L by

(X y "
LIG] = exp{-f awrat - [¥ boratlilel (c.3)
X Y
where
LIG] = Gy, + G + [e](x) + c,(v)]G. (C.4)

Eq. (C.4) is precisely in the form dealt with in

the manuscript. Now if G satisfies

LIG] = §(x=X) 6 (y-Y) (C.5)

then Eq. (C.l) is satisfied since the exponential term




in Eq. (C.3) becomes unity when (x,v) = (X,Y).

Returning to Eq. (C.4) we note that

El(x) = cl(x) - [a(x)]2 - a'(x), (C.6a)
and

g,(9) = eyly) - B(YIZ - b (). (C. 6b)
Let L have the form of the example in section 4

of the manuscript, that is

P = 2 _ m(m+l) 3
LIGI = Gy + Gy + [6° - BE1 16, (C.7)

Eq. (4.11) of the manuscript gives us the expression
for the Green's function G satisfying G=0 on
x=0 and G+ 0 as x2+y2 +> o,

Hence we can generate Green's functions for the

following non-self-adjoint equations:

2m 2

L,l6,] = G + G - =G} +k'G,, (c.8)
y B lxx 1YY x % 1l
and
XX yv X y

The Green's function for (C.8) is
Gy (%,¥:%,Y) = (@™ G(x,v:X,¥) (€. 10)
and for (C.9) is

6, (x,11x,0) = " T VG, 0ix,1) . (Cc.11)

G1 and G2 are both 0 on the singular line x =0

1

but they no longer vanish at infinity.




Appendix D: THE GREEN'S FUNCTION FOR

m(m+1) n(n+l) i
L e e

‘In section 3 of the manuscript, the addition for-

mula was derived for equations of the form

B uyy + [cl(x)+c2(y)]u = 0.

However, in all the examples in the manuscript, cy
was identically constant. In this appendix we shall
find the Green's function G(x,y:;X,Y) defined in the
first quadrant of the x,v plane (x > 0, y > 0)

satisfying

m(m+1)

xz % Y

Gxx + ny -

+ n‘“‘;l)]c = 6(x=X) §(y-¥) (D.1)

- and subject to the boundary conditions

G=0 on x=0 andon y = 0.

Following the analysis of section 4 of the manu-

script, we consider the Green's function G, (x,t;X,0)

of the hyperbolic equation

- ~ m(m+}) b
Wy = Sy _:2.l_u 0 (D.2)

which we found to be (see Appendix B )

? o1 x2ex2-¢2
Gl(x,t,x,O) 2 Pm(T )

for |[x=X|<t < x+X
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and, for m a positive integer, 0 elsewhere.
Next we need the Green's function Gz(t,y;O,Y)
for the elliptic equation
. h(n+l)
U, + uyy i n=0. (D.4)
¥ i
The solution to this problem with boundary condition ?
G, = 0 on y=0 (D.5)

was the subject of section 4f of the manuscripot and

with a change of notation is precisely Ea. (4.24):

Gy (£,y:0,¥Y) = = 2= f:::: pn(Yz*Yi;;2‘52)§§ (D. 6)
where

p(t) = /t2+(y-v)2 (D.7a)
and

3(e) = A2 (yer)? . (D.7b)

Continuing to follow the analysis of section 4

we f£find our two forms for G:
G(x,v:;X,Y) = Gz(x-x,y;O,Y) + ZGI(x,x+x;x,0)Gz(x+x,y;O,Y)

i x+X

x=-X t

x+X :
=2 I G, (x,t;X,0)G, (t,y:;0,¥)dt. (D.9)
x=Xx 1 t

These forms are identical to Egs. (4.7) and (4.8) of

the manuscript. In Eq. (D.8) the required logarithmic
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T T T

singularity of G is apparent+'in the first term
c:2 (x-X,v:0,Y). As a matter of fact, it was proven in 1
the manuscript (section 4b) in an even more general

form. Combining (D.5) with (D.8) we find that
G(x,0;X,Y) =0

as desired. Also, since Gl and Gz are even func-
tions of t, the integrand of (D.9) is odd and from

(D.9) we see that

G(0,y:X,Y) = 0.

Finally, direct d;’.fferer.tiation of (D.8) and (D.9)

verifies that G is indeed a solution of the homo-

geneous form of Eq. (D.l) when (x,y) # (X,¥Y).
Substitution of (D.3) and (D.6) into (D.8) yields

2 e
G(x,y:X,¥) = - EF Pn(I,+Y +(x=-X) “-s )%ﬂ
o (x=X) 2yvY

{5 (x=X) 2

D (x+X
& (_l)m r:(x )

2,.v2 > NS
ye+Y 4+ (x+X) “=-s< ds
7 e e s

o (x+x) P gk .

¥ i —" ) +

i B e x2+x2-¢2
2xX m 2xX

‘ 1 I 2+Y2+ 2.¢2,ds
\ ¢ e P_(LHLTHET=ST) =2 .at (D.10)
| T loey M Y .

;j where p and p are as defined in (D.7a) and (D.7b).
’

The situation simplifies somewhat in the case m=l=n.
I Then




YT e T T T T T T
P T
~

-

2.2
1 l vo+Y +(x-x) x=-X
G(x,y:X,Y) = + log
] 2yy P (x=-X)
1 ; 22+Y2+(x+x)2 ton 0 (x+X)
2% 8 2yY B (x+X)
R . - 24y24¢2
‘ZI 2 ;. % l__ VéehRYedht 109, p(t) }ae. (D.11)
X=X xX 2m ZYY (t)

The integral may be written in a closed form consist-

ing of expressions containing powers of (x*X) and

(y£Y¥) and logarithms of (x:x)2 + (ytY)z [see
reference 6, png. 205, 2.732].




Appendix E: AN ADDITION FORMULA FOR RIEMANN FUNCTIONS
FOR HYPERBOLIC EQUATIONS

As mentioned in section 1 of the manuscript, the
motivation for this thesis in elliptic partial differ-
ential equations came from recent advances in the theory
of Riemann functions for hyperbolic partial differen- i
tial equations. Because of the nice properties of
hyperbolic equations (e.g., the Riemann function is

the solution to a homogeneous equation and, thus, has

no singularity, the domain of influence of hyperbolic

equations is bounded by two real characteristics and
thus finite in the spatial direction, the Riemann
function does not depend on boundary or initial con-
~ditions) it is much simpler to state and prove an
addition formula in the hyperbolic case. The follcw-
ing theorem and corollary may be found in reference

3. The proof consists basically of a change of depen-
dent variable to transform the equation from non-self-
adjoint form into self-adjoint form (as was done in
Appendix C of this thesis) and direct substitution
and differentiation in the equation (as was done in

section 3c of the manuscript).

THEOREM. If Rl(x.y,x.Y) and Rz(x.y.x.Y) are

the respective Riemann functions for




B UYY * Zbl(x)Ux + cl(x)U =0

and

D™ UYY - 2b2(Y)UY = c,(yv)u =0,

then the Riemann function R(x,y,X,Y) for
UXX-UYY + 2bl(x)Ux - 2b2(y)UY + [cl(x)-cz(y)]U =0

is given either by

R(x,y,X,¥) = Rl(xly-YIXIo) exp[fy bz(t)dt]

X

x-X
+ fy-Y Rl(xot'xlo) th(trYrorY) dt
or by

X

R(x,y,X,Y) = Rz(x'erlocY) exp[j bl}t) dt]

X
Y- ;
+ f R, (t,y,0,¥) Ry, (x,t,X,0) dt.
) =

‘x=X
COROLLARY. Consider the equation
Urs + 4b1(r+s)[Ur+Us] + 4b2(r-s)[Ur-Us]

+ 4[cl(r+s) - cz(r-s)]U = 0. (E.1)

If the Riemann function of (E.l) is Vl(r,s,R,S) when

=0,

b2 = c2 = 0 and is Vz(r,s,R,S) when bl =cy

then the Riemann function of (E.l) is given by

A A o AR 5 b e




(r+S
v(r,s,R,S) = v (r,s,R,S) exp [l b () dt]
1 JR+S 1

v (r+s+t' r+s-t R+S R+S),

r-R+s-S
+ a2
J r-R=s+S 1 2 . gE e i

:2 ’ —

A Ry ¥ 2 e ) iakt .

T{;:w Sl R

5
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